

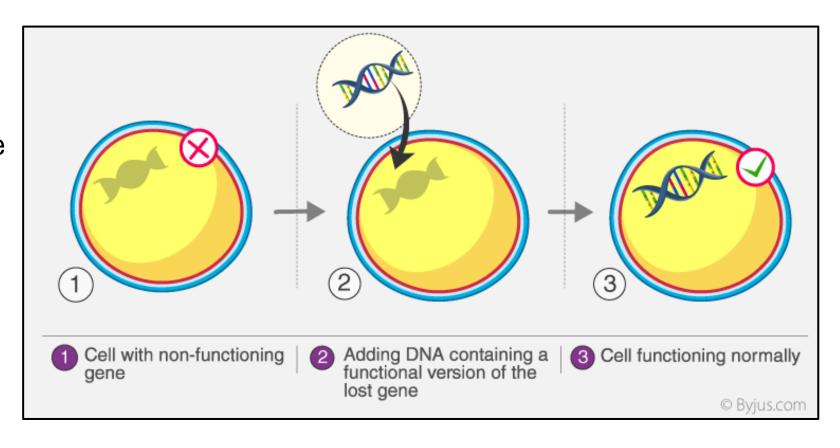
The ethical conduct of cell and gene therapy research: Novel challenges and ethical considerations for researchers and regulators (REC, UNCST & NDA)

Joint Clinical Research Centre

12th Annual Natioanl Research Ethics Conference (ANREC)
21-22nd October 2025

Cissy Kityo Mutuluuza, MBChB, MSc, PhD, FUNAS, DSc Executive Director, JCRC

Gene Therapy Flavors and Indications


What is gene therapy?

Gene therapy seeks to modify or manipulate the expression of a gene or to alter the biological properties of living cells for therapeutic use.¹

Alterations can include:

- Inactivation or deletion of disease-causing gene
- Replacement with a healthy copy of gene
- Insertion of a new or modified gene

Somatic editing modifies non-reproductive cells.

The potential of gene therapy

- 1. Genetic therapies focus on underlying disease biology, rather than symptom management. If the genetics are known, there is no need to identify small molecules that can treat, gene therapy can immediately be developed for treatment or cure.
- 2. Genetic therapies could be a one-time treatment with transformational and curative potential.
- 3. First <u>32</u> gene therapies approved by the U.S. FDA and EMA. FDA anticipates 10-20 new approvals per year by 2025.
- 4. As of 2022, there were 1,221 active clinical trials of gene therapies which are designed to treat >100 different diseases worldwide. (Statista.com; *Number of active trials for cell and gene therapies worldwide 2022 by trial phase,* Published by Matej Mikulic, Nov 23, 2022)

Indications for gene therapy

Any disease with a biological understanding for which manipulation of genetic material could provide cure, treat an unmet need or transform disease course and health outcome.

- Inherited diseases, especially if monogenic (single-gene defect)
- Malignant diseases, regardless of genetic basis
- Infectious diseases

At present, **germline editing** (editing reproductive cells or early embryos), is considered too risky and a moratorium has been called for and agreed upon by multiple countries.

(Nature_Moratorium_2019)

Current federal law in the U.S. and WHO prohibit any applications "in which a human embryo is intentionally created or modified to include a heritable genetic modification."

Gene Therapy: A New Era in Medicine

- Gene therapy represents a paradigm shift in medicine moving from treating symptoms to curing diseases at their genetic root
- Curative Potential for Previously Incurable Diseases (HIV, Sickle Cell Disease, Cancers)
- There are over 30 approved gene therapy products on the market

Relevance to Africa's Health Burden

- Africa has a high prevalence of genetic and infectious diseases, and a young population making gene therapy especially impactful:
 - Over 300,000 babies born annually with SCD in Sub-Saharan Africa
 - Millions living with HIV/AIDS
 - Rising rates of cancer and non-communicable diseases
- Gene therapy offers hope for durable, cost-effective solutions that reduce longterm healthcare costs and improve quality of life.

In vivo versus ex vivo gene therapy

- Ex vivo gene therapy takes cells from the body, administers the gene therapy to the cells in a laboratory, and then returns those cells to the body.
- In vivo gene therapy delivers genetic material directly to living cells inside the body.

Intermediary Stage; Ex-vivo gene therapy

PBMCs

Ex vivo gene therapy

PLWH on ART

Leukapheresis

PBMCs

CD4+ enriched

T cells

CCR5

positive

ZFN-cut

CCR5 gene

CAR T cell therapy

Gene modification of T cell

(to target HIV envelope)

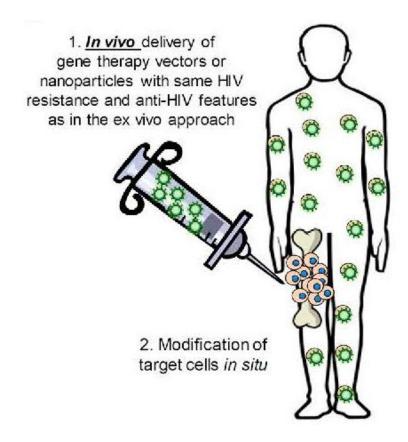
Expansion of CAR T cells

CAR T cell

-000

CAR

Ex vivo gene editing


Re infuse

CCR5 negative

Ideal target product profile for an HIV cure

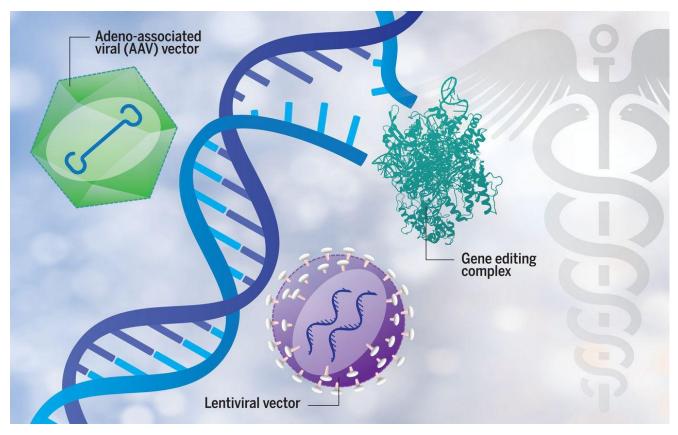
 "Single-shot" (administered simply and percutaneously in an outpatient setting)

In vivo delivery of curative interventions

First 7 gene therapies approved globally include both in vivo and ex vivo approaches for cancer and inherited diseases

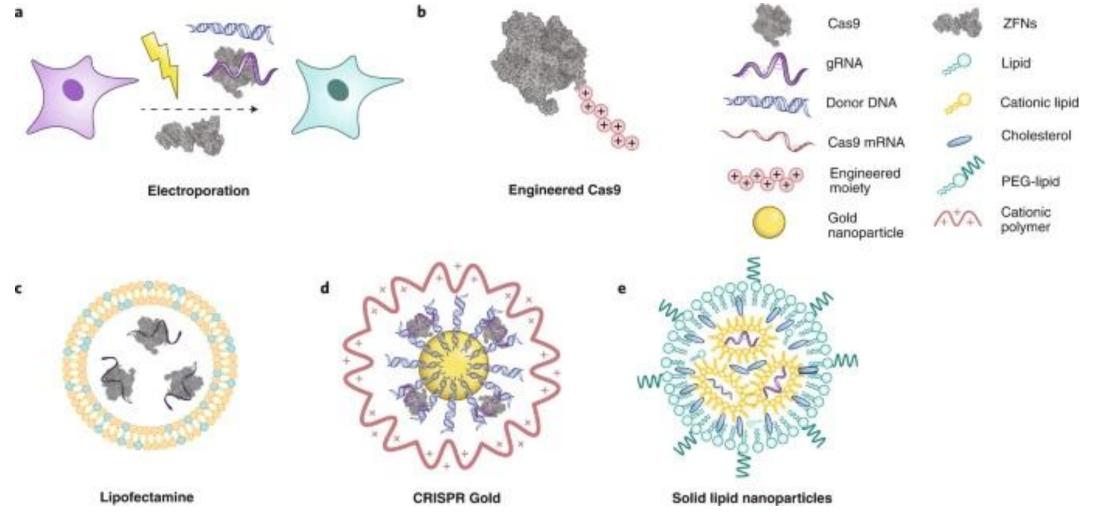
Tradename (proper name)	Date of Approval	Approving Agency	Indication	Manufacturer	Delivery Route	Vector
Gendicine	October 2003	State Food and Drug Administration of China	Head and neck squamous cell carcinoma	Shenzhen SiBione GeneTech (Shenzhen, China)	In vivo; intratumoral or intracavital injection or intravascular infusion	Adenovirus (Ad) encoding a tumor suppressor gene (p53)
Glybera® (alipogene tiparvovec)	November 2012	European Market Authorization (EMA)	Lipoprotein lipase deficiency	uniQure (Amsterdam, Netherlands)	Intramuscular injection	Adeno-associated virus (AAV) serotype 1 encoding functional LPL gene
Strimvelis™	June 2016	EMA	Adenosine deaminase deficiency (ADA-SCID)	GlaxoSmithKline (Middlesex, U.K.)	Ex vivo; autologous transduced CD34+ hematopoietic cells	Retroviral vector encoding the adenosine deaminase gene (ADA)
Kymriah™ (tisagenlecleucel)	August 2017	U.S. Food and Drug Administration (FDA)	Acute lymphoblastic leukemia	Novartis Pharmaceuticals (Basel, Switzerland)	Ex vivo; autologous transduced T cells	Lentiviral vector encoding a chimeric antigen receptor (CD19 CAR)
Yescarta™ (axicabtagene ciloleucel)	October 2017	FDA	B-cell lymphoma	Kite Pharma Inc. a Gilead Company (Santa Monica, California, U.S.)	Ex vivo; autologous transduced T cells	Lentiviral vector encoding a chimeric antigen receptor (CD19 CAR)
Luxturna (voretigene neparvovec-rzyl)	December 2017	FDA	Biallelic RPE65 mutation- associated retinal dystrophy	Spark Therapeutics, Inc. (Philadelphia, PA, U.S.)	In vivo; subretinal injection	AAV encoding functional RPE65 gene
Zolgensma® (onasemnogene abeparvovec-xioi)	May 2019	FDA	Infantile onset spinal muscular atrophy (SMA) caused by biallelic SMN1 mutation	AveXis Inc. (Bannockburn, IL, U.S.)	In vivo; intravenous injection	AAV gene encoding functional SMN1 gene

Appropriate vectors to administer gene therapy


Today, most gene therapies are administered by adenoassociated viruses (AAV) vectors or lentiviral vectors (LV)

Three essential tools for human gene therapy.

- AAV and LV are the basis of several recently approved gene therapies.
- Gene editing technologies are in their translational and clinical infancy but are expected to play an increasing role in the field. (First FDA review of CRISPR in progress with decision expected in 2024).

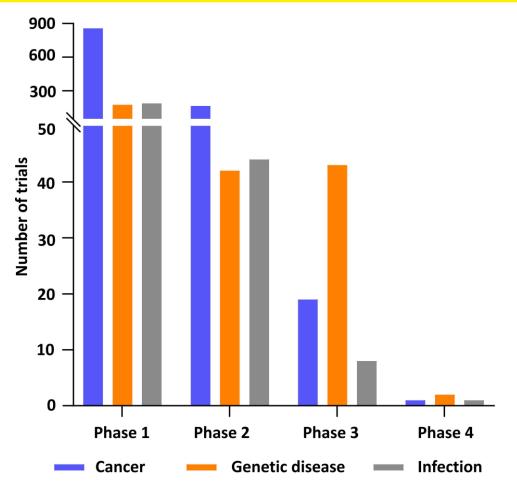

The type of vector to use depends on several factors:

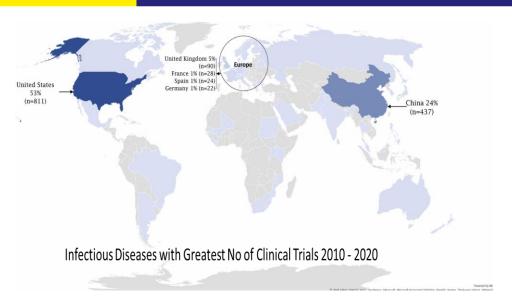
- 1. Will the cell receiving the gene therapy divide over the patient's lifetime?
 - a. If yes, need integrating LV or gene editing of cellular DNA
 - b. If no, then gene therapy can be administered with non-integrating vector such as AV or AAV.
- 2. How big is the gene therapy payload to be delivered?
- 3. What cells need the gene therapy?

Science_Gene therapy comes of age_2018

Overview of nonviral methods to deliver gene editing cargo

a, Electroporation is a highly effective means to deliver mRNA or nuclease protein in vitro. **b**, In addition, nuclease proteins can be recombinantly or covalently modified to enhance delivery properties, such as cell binding or nuclear entry. **c**, **d**, Lipofectamine (**c**) and gold nanoparticles (**d**) have been used to deliver nuclease mRNA, protein and gRNAs. **e**, Because of previous advances in siRNA delivery, SLNs are currently the most advanced non-viral vehicles for genome editing cargo delivery in vivo.




LMIC are Currently Excluded from Gene Therapy Development

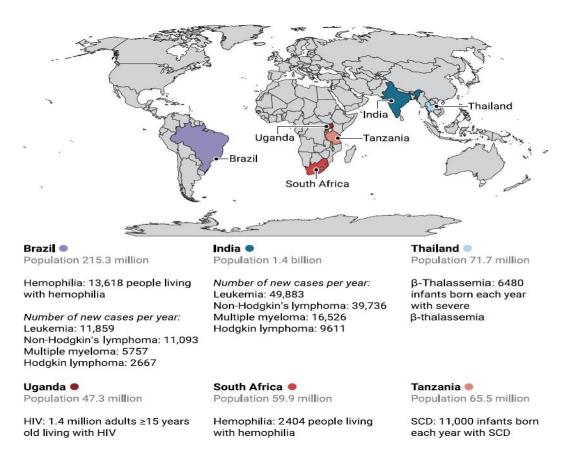
NAU

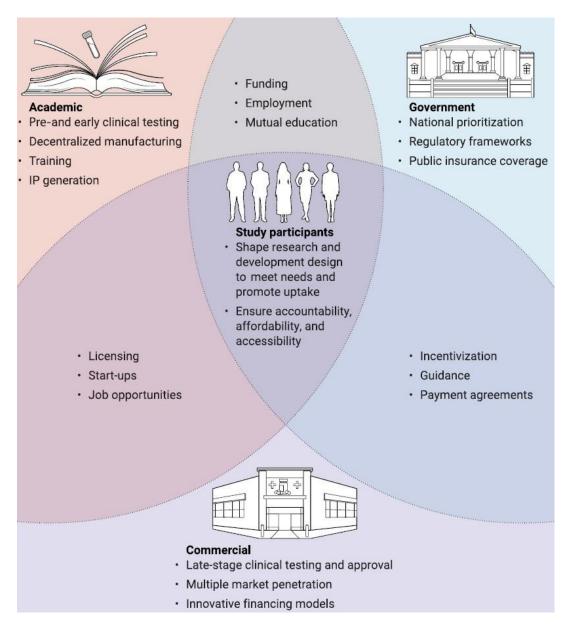
Arabi et al., 2022: *Gene therapy clinical trials, where do we go? An overview* 10/21/2025

Target	No of Clinical Trials
HIV	62
COVID-19	29
Malaria	20
Ebola	19
Hepatitis C	13
Human Papillomavirus	12
Hepatitis B	10

Since 1994, 3,900+ Gene Therapy Clinical Trials across 46 countries have been registered

THE NUMBER OF GENE & CELL THERAPY TRIALS WHICH HAVE TAKEN PLACE IN AFRICA:


0


Adoption of Cell and Gene Therapy in Africa is inevitable and will grow with ethical concerns about safety, efficacy, and accessibility

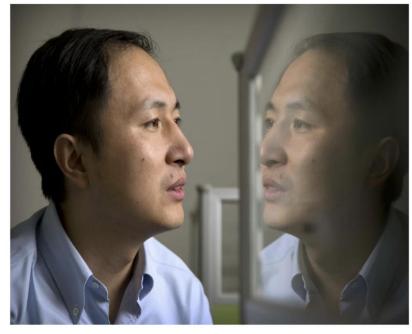
GENE THERAPY

The translational gap for gene therapies in low- and middle-income countries

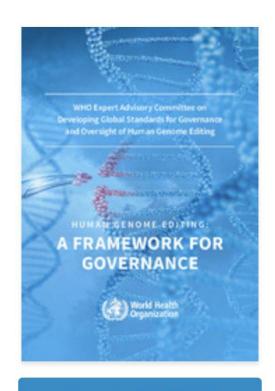
Kevin W. Doxzen¹*, Jennifer E. Adair^{2,3}, Yris Maria Fonseca Bazzo⁴, Daima Bukini^{5,6}, Kenneth Cornetta⁷, Varsha Dalal⁸, Renato Luiz Guerino-Cunha^{9,10}, Suradej Hongeng¹¹, Geeta Jotwani¹², Cissy Kityo-Mutuluuza¹³, Krishnamurti Lakshmanan¹⁴, Johnny Mahlangu¹⁵, Julie Makani^{5,6,16}, Vikram Mathews¹⁷, Margareth C. Ozelo¹⁸, Savita Rangarajan^{19,20}, Janine Scholefield^{21,22}, João Batista Silva Júnior^{23,24}, Joseph M. McCune²⁵

Doxzen KW, Adair JE, Fonseca Bazzo YM, Bukini D, Cornetta K, et al. The Translational Gap for Gene Therapy in Low and Middle-Income Countries. Sci Transl Med 2024; 16 (746): eadn 1602.

Gene Therapy Policy and Regulations


Infrastructure for Commercialization

Background

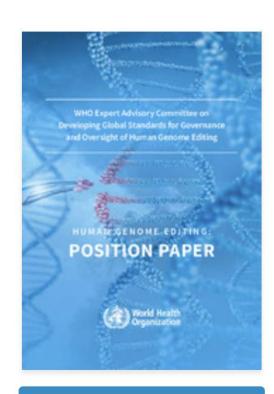


Genetics researcher He Jiankui said his lab considered ethical issues before deciding to proceed with DNA editing of human embryos to create twin girls with a modification to reduce their risk of HIV infection. Critics say the experiment was premature

- Nov 2018: A Chinese scientist claimed to make the world's first genome-edited babies (twin girls)
- Their genome was edited to disable the pathway HIV uses to infect cells
- Controversial reactions to this development due to safety and ethical concerns of using the technology outside the research context especially embryonic research
- **Dec 2018:** WHO established a global multi-disciplinary expert panel to examine the scientific, ethical, social and legal challenges associated with human genome editing (both somatic and germ cell).

The Expert Advisory Committee on Developing Global Standard for Governance and Oversight of Human Genome Editing:

Developed Three Documents:


Download (1.2 MB)

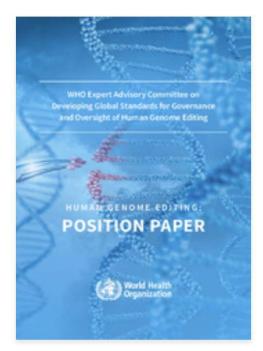
https://www.who.int/publications/i/item/9789240030060

Download (919.5 kB)

https://www.who.int/publications/i/item/9789240030381

Download (225.6 kB)

https://www.who.int/publications/i/item/9789240030404


Recommendations:

The Committee produced a series of recommendations in nine discrete areas:

- 1. Leadership by the WHO and its Director-General
- 2. International collaboration for effective governance and oversight
- 3. Human genome editing registries
- 4. International research and medical travel
- 5. Illegal, unregistered, unethical or unsafe research and other activities
- 6. Intellectual property
- 7. Education, engagement and empowerment
- 8. Ethical values and principles for use by WHO
- 9. Review of the recommendations

Position Paper:

Preventing premature use of human genome editing:

To help ensure heritable human genome editing does not proceed prematurely to clinical trials, the Committee recommended, and the WHO Director-General subsequently made, a policy statement in July 2019 clarifying that "it would be irresponsible at this time for anyone to proceed with clinical applications of human germline genome editing."

Advancing Gene Therapy Legislation in Uganda

Again, GERA bill debated and passed by Parliament with no Presidential Assent.

2018

JCRC through MoH and WHO requested the President to revisit GERA Act.

The Rt. Hon. Prime Minister convened stakeholders, forming a multi-sectoral committee, including Dr. Kityo, to develop a new legal framework, starting with a participatory Regulatory Impact Assessment (RIA)

An Inter-Ministerial Working Group, led by UNCST, was formed to revise the RIA. align stakeholder input, and propose a task force to finalize the Bill.

Genetic Engineering Regulation Bill (GERA) debated and passed

by Parliament but

without Assent from

President.

JCRC engaged WHO for support on adoption of WHO Gene Editina Guidelines that had been recently released.

Feb

2022

H.E. the President directed the Bill's revision to include gene therapy and other modern scientific applications, ensuring alignment with global trends and Uganda's research growth.

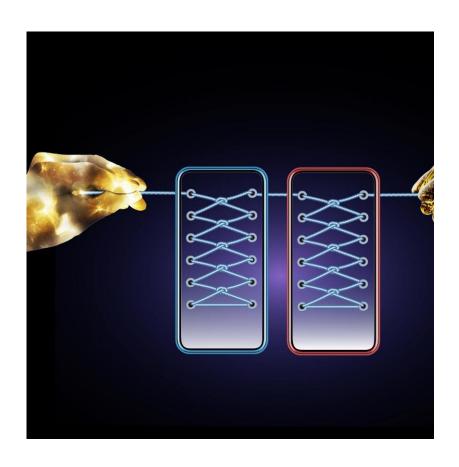
May

2022

The Prime Minister chaired a policy meeting to review progress. The RIA was submitted to the President's Office on 24 December and returned with comments for refinement.

The finalized key principles guiding the drafting of the Biosafety and Biosecurity Bill, 2025 were formally submitted to the Uganda Cabinet for consideration.

Sep 2025



Novel Ethical Dilemmas in Cell and Gene Therapy

Informed Consent Challenges

Genetic modification trials complicate informed consent due to participants' limited understanding of long-term effects.

Risk-Benefit Analysis Complexity

First-in-human studies carry uncertain benefits and unknown risks, complicating ethical risk-benefit evaluations.

Equity and Access Issues

Access to advanced therapies is limited in low- and middle-income countries, raising equity concerns.

Privacy and Data Protection

Protecting genetic data privacy is critical to prevent misuse and discrimination in cell and gene therapy.

Ethics Discussion Questions

Key principles include autonomy, beneficence, non-maleficence, and justice to protect research participants

Cell and gene therapy require rigorous ethical oversight due to unique risks and complexities.

INFORMED CONSENT

How do we know if/when we have achieved informed consent, especially when long-term consequences may be unknown?

MEDICAL NECESSITY

What criteria stand out to determine when a cell and gene therapies can be ethically justifiable?

ENSURING SAFETY AND MINIMIZING UNINTENDED CONSEQUENCES

How can we ensure the safety of cell and gene therapies?

SOCIAL IMPLICATIONS

What are some of the broader social implications of cell and gene therapies?

Could cell and gene therapies deepen inequalities?

GOVERNANCE

What role should regulatory bodies play in cell and gene therapy research?

Should different countries have different regulations?

Who is responsible for oversight?

Ethical Considerations for Cell and Gene Therapy

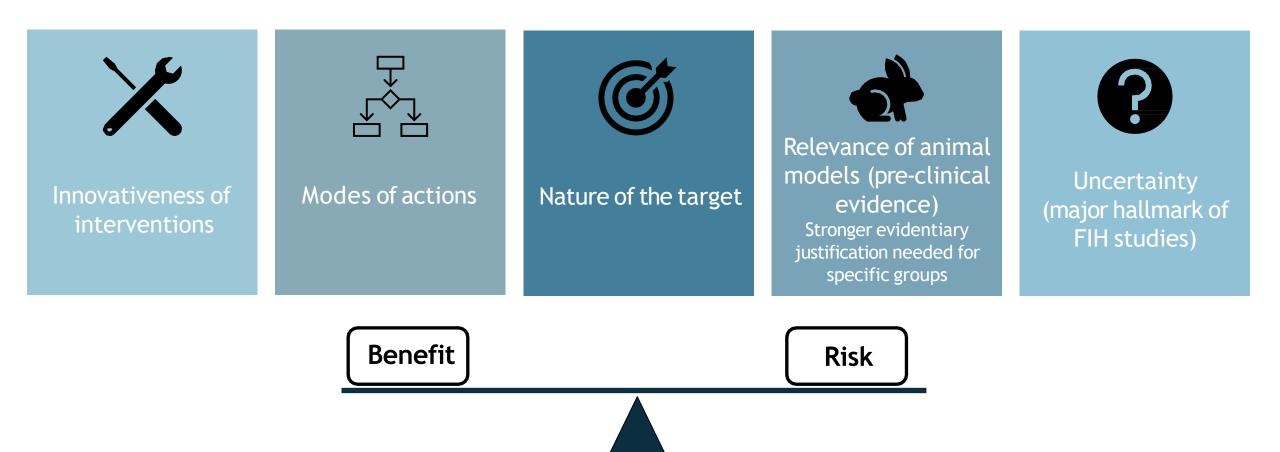
Favorable Risks and Benefits Balance

The choice of whether to use gene therapy is about risk-to-benefit ratio for a given disease circumstance

Risk/benefit
assessment is one
of the fundamental
requirements in
ethical review of
research involving
human participants
(Aarons)

Research must have higher chance of doing good, overall, than doing harm*

Researchers should minimize risks and maximize benefits


Need to protect participants from excessive risks

Difficult to evaluate because there can be asymmetries

Ethical Considerations for Cell and Gene Therapy

Other Things to Consider in Evaluating Risks

Risk-Benefit Assessment and Justification

RISKS BENEFITS Indeterminate Aspirational **Direct Benefits** Indirect or risks benefits (to society (expected medical collateral benefits Controversial risk-benefit justification or future patients) benefits) based on limited safety and efficacy data Refers to access to Expected to be minimal medical care Parameters are questionable Some risks Physical risk (e.g., tumor shrinkage, life expectancy) manageable whereas Psychological, moral, financial, Use of psychological benefits is debatable some harms social and legal risks may be irreversible Risks of omission (e.g., use of Exploratory placebo controls in trial designs) High risk Potential Risks **Possible Benefits** Probability, duration and magnitude pharmacoloay Maximization of their effects Risks of "me too"

drugs more predictable than those of innovative interventions

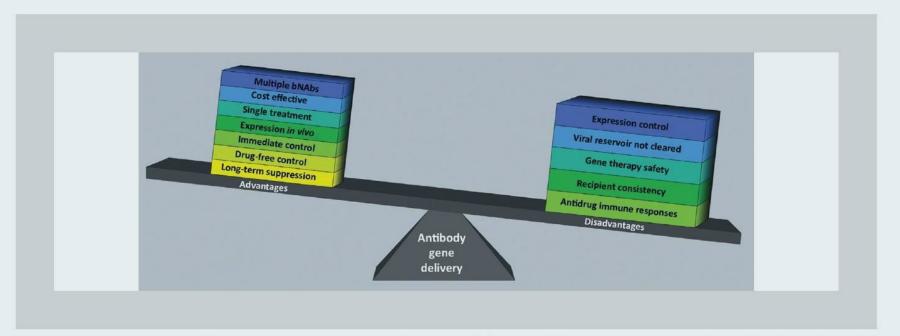
Fig 1. Risk-benefit assessment and justification.

Justification?

Karlberg JPE, Speers MA. Reviewing Clinical Trials: A Guide for The Ethics Committee. 2010. 153 pages. Available at: https://books.google.com/books/about/Reviewing Clinical Trials.html?id=wGz2cQAACAAJ

Koonrungsesomboon N, Laothavorn J. Karbwang J. Ethical Considerations and Challenges in First-in-Human Research. Translational Research 2016; 177: 6 - 18.

Each arrow represents a clinical trial for one and the same test drug - here a diabetes drug


Confirmatory

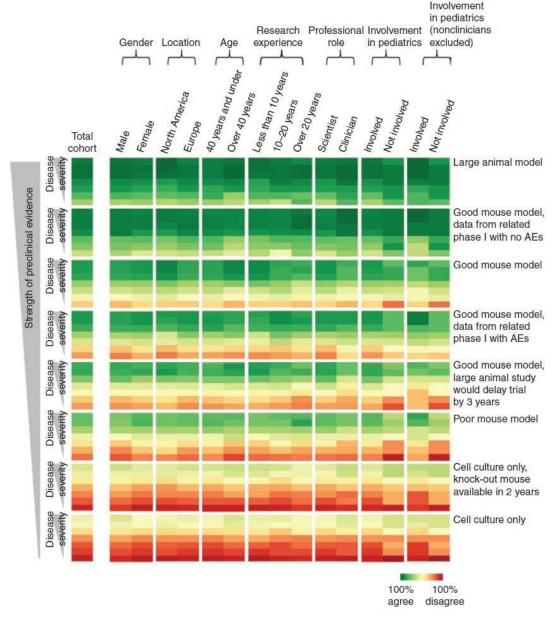
Medium/low risk

HIV Gene Therapy Strategies and Safety: What do we know from the Recent Publications?

Silvere D. Zaongo^{1,2}, Huan Xia^{1,3} and Ping Ma^{1,3,4*}

¹Department of Infectious Diseases, Tianjin Second People's Hospital; ²International School of Medicine, Tianjin Medical University; ³Tianjin Association of STD/AIDS Prevention and Control; ⁴School of Medicine, Nankai University, Tianjin, China

Figure 3. Illustration of advantages and disadvantages of AVPs approach through antibody gene delivery method. HIV-1 broadly neutralizing antibody (bNAb) gene delivery has a number of potential advantages in preventing and treating infection, but these are countered by disadvantages that currently limit development. A functional cure based on this strategy may be possible if a balance can be reached to make the approach safe, feasible, and consistent among human recipients. From Haigwood and Hessell, 2019.⁷⁵


Zaongo SD, Xia H, Ma P. HIV Gene Therapy Strategies and Safety: What Do We Know from the Recent Publications? AIDS Rev 2020; 23(3): 165 - 202.

Gene Therapy Researchers' Assessments Of Risks And Perceptions Of Risk Acceptability In Clinical Trials

Claire T. Deakin^{1,2}, Ian E. Alexander^{1,3}, Cliff A. Hooker^{2,4} and Ian H. Kerridge^{2,5}

Table 4 Descriptions of preclinical evidence provided to respondents for decision-making about the initiation of a clinical trial

Abbreviated description of preclinical evidence	Description of preclinical evidence as provided to respondents in the survey instrument		
Cell culture only	A statistically powered study demonstrating therapeutic efficacy in relevant primary human cells in culture AND evidence of safety in a validated cell culture assay		
Cell culture only, knock-out mouse available in 2 years	A statistically powered study demonstrating therapeutic efficacy in relevant primary human cells in culture AND evidence of safety in a validated cell culture assay, if a knock-out mouse model is expected to be generated within 2 years		
Good mouse model	A statistically powered study demonstrating safety and therapeutic efficacy, in correcting a mouse phenotype with no evidence of toxicity or adverse events in long-term follow up, using a mouse model where the phenotype is the same as the human disease (no large animal model available)		
Poor mouse model	A statistically powered study demonstrating safety and therapeutic efficacy, in correcting a mouse phenotype with no evidence of toxicity or adverse events in long-term follow up, using a mouse model that involves the same gene but where the phenotype differs from the human disease (no large animal model available)		
Good mouse model, large animal study would delay trial by 3 years	A statistically powered study demonstrating safety and therapeutic efficacy, in correcting a mouse phenotype with no adverse events, using a mouse model where the phenotype is the same as the human disease and when a large animal model is available but a large animal study would delay trial initiation by 3 years		
Large animal model	A statistically powered study demonstrating safety and therapeutic efficacy in a large animal model, in correcting a disease phenotype that is the same as the human disease and with no adverse events in long-term follow up		
Good mouse model and data from related phase I trial with no adverse events	Convincing preclinical safety and efficacy data in a mouse model and data from a phase I trial targeting a different disease of the same target tissue, which used the same technological intervention and demonstrated therapeutic efficacy and no adverse events		
Good mouse model and data from related phase I trial with low frequency adverse events	Convincing preclinical safety and efficacy data in a mouse model and data from a phase I trial targeting a different disease of the same target tissue, which used the same technological intervention and demonstrated therapeutic efficacy and a low frequency of serious and life-threatening adverse events (e.g., <10%)		

Deakin CT, Alexander IE, Hooker CA, Kerridge IH. Gene Therapy Researchers' Assessments of Risks and Perceptions of Risk Acceptability in Clinical Trials. *Molecular Therapy* 2013; 21(4): 806 - 15.

Human Genome Editing in the Clinic: New Challenges in Regulatory Benefit-Risk Assessment

Table 1. A Regulatory Perspective on Feasibility to Surmount Genome-Editing Safety and Efficacy Challenges					
Challenges	Regulatory Feasibility to Overcome	Approaches to Address Challenges			
Off-target activity, resulting in insertion or deletion mutations and/or chromosomal translocations	moderate	 assays to predict and identify off-target activity and/or translocations in place 			
		 biological assays to evaluate functional consequences of off-target activity still in development 			
Necessity to maximize efficiency of designer nuclease delivery and to control nuclease expression level and duration	moderate to high	 in vivo CRISPR-Cas delivery (mRNA, protein) via lipid nanoparticles may help to fine-tune level and duration of nuclease expression 			
		 ex vivo delivery of nuclease encoding mRNA by electroporation allows fine-tuning level and duration of nuclease expression 			
		 ex vivo delivery of nucleases in the form of DNA can be inefficient and induce high cytotoxicity 			
naccurate or random donor DNA (AAV or IDLVs, bligodeoxynucleotide donors) integration in the	moderate to high	 assays to detect random integration of AAV and IDLVs in place 			
genome		 randomly integrated oligodeoxynucleotides are difficult to detect 			
Highly variable tissue distribution of desired in vivo genome-editing event	moderate	 collection and assessment of a diverse panel of all major organs and tissues 			
Potential of immune reaction to nuclease components of current gene-editing systems	moderate	use of immune suppression may be required			

Abou-El-Enein M, Cathomen T, Ivics Z, June CH, Renner M, Schneider CK, Bauer G. Human Genome Editing in the Clinic: New Challenges in Regulatory Risk-Benefit Assessment. *Cell Stem Cell* 2017; 21: 427 - 30.

Informed Consent

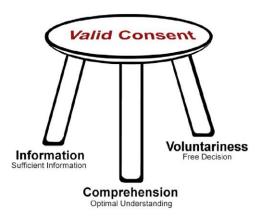


Fig 3. Informed consent.

Challenges in FIH include:

- Complexity of information to be disclosed
- Need to ascertain comprehension and voluntariness
- Uncertain nature of non-therapeutic design
- Participation of people considered "vulnerable"

Informed Consent Contents

The ICH GCP specifies that the following 20 issues should – if applicable – be properly addressed, using layman's language, in the written informed consent form. In short the 20 points are:

- The trial involves research.
- Purpose of the trial.
- Trial treatment(s).
- Trial procedures.
- The participant's responsibilities.
- Experimental trial aspects.
- Foreseeable risks or inconveniences.
- Expected benefits.
- Alternative procedure(s) or treatment (s).
- Compensation and/or treatment available in the event of trial-related injury.
- Payment to participant.
- Expenses for participant.
- Participation is voluntary, and the participant may refuse to participate or withdraw from the trial at any time.

- The monitor(s), the auditor(s), the EC, and the regulatory authority(ies) will be granted direct access to the participant's medical records.
- Records identifying the participant will be kept confidential.
- The participant or representative will be informed if information becomes available that may be relevant to their willingness to continue participating in the trial.
- Person(s) to contact for further information regarding the trial, rights of trial participants, and in the event of trial-related injury.
- Circumstances and/or reasons under which participation in the trial may be terminated.
- Expected duration of trial participation.
- Approximate number of participants involved in the trial.

Koonrungsesomboon N, Laothavorn J. Karbwang J. Ethical Considerations and Challenges in First-in-Human Research. *Translational Research* 2016; 177: 6 - 18. Karlberg JPE, Speers MA. Reviewing Clinical Trials: A Guide for The Ethics Committee. 2010. 153 pages. Available at:

https://books.google.com/books/about/Reviewing_Clinical_Trials.html?id=wGz2cQAACAAJ

Possible Challenges toInformed Consent

Table 1: Challenges during the informed consent process

Research team

Poor communication technique

Lack of time for the consent process

Inability to detect lack of patient comprehension

Legal outlook toward consent process

Patients

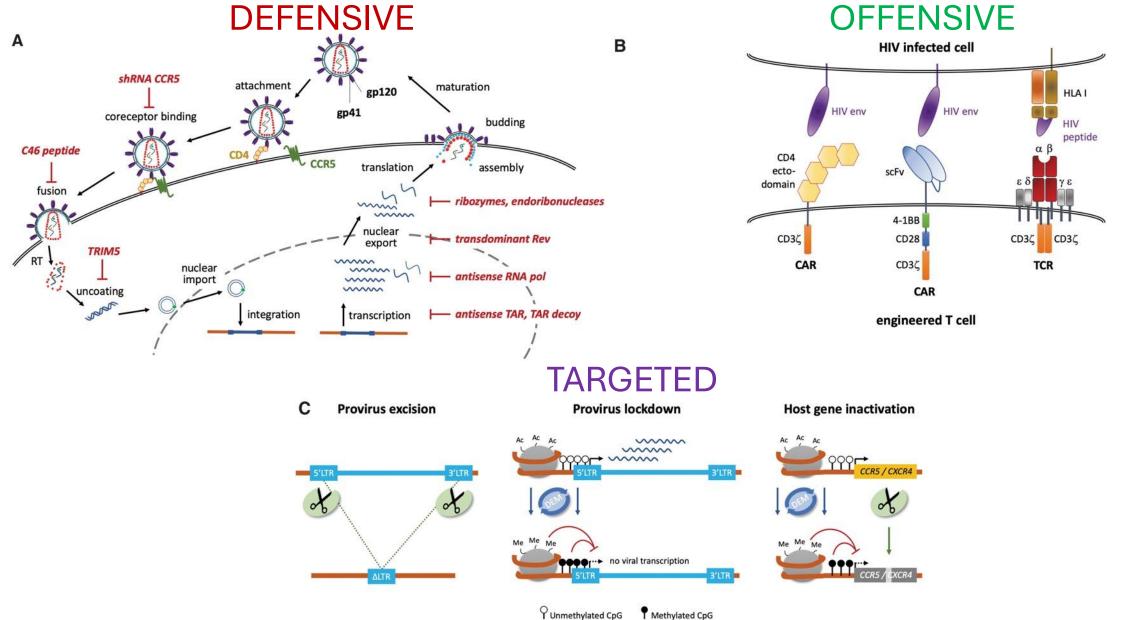
Anxiety and fear of new procedures

Health status (terminal, debilitating diseases)

Cognitive impairment (neurological disorders, elderly)

Denial of disease state

Informed consent document


Complex language

Medical terminologies

Legal nature

Lengthy consent documents

Gene therapy strategies to treat HIV: Defensive, Offensive, Targeted

Cornu et al. (2021) Human Gene Therapy. 32(1-2):52-65

Selection of Suitable Population

- Addresses the principles of beneficence, justice and respect for persons
- Must be grounded on both scientific and ethical aspects
- Healthy volunteers generally preferred in FIH trials
 - Provide "cleanest" data and can tolerate adverse reactions better
 - But have more to lose
 - Not qualified to serve as participants in some studies that involve target-related, PD or surrogate parameters
- FDA issued policy in 1677 excluded women of childbearing age in early-phase trials

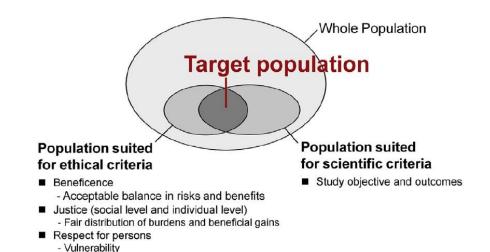


Fig 2. Subject selection.

> J Law Med Ethics. 2009 Spring;37(1):38-50. doi: 10.1111/j.1748-720X.2009.00349.x.

First-in-human trial participants: not a vulnerable population, but vulnerable nonetheless

Rebecca Dresser 1

Prevention of HIV Transmission during ATIs

A collaborative, multidisciplinary approach to HIV transmission risk mitigation during analytic treatment interruption

Partner protections in HIV cure-related trials involving analytical treatment interruption: Updated toolkit to mitigate HIV transmission risk

A partner protection package for HIV cure-related trials involving analytical treatment interruptions

Karine Dubé, Tia Morton, Lawrence Fox, Lynda Dee, David Palm, Thomas J Villa, William Freshwater, Jeff Taylor, Gail Graham, William B Carter, John A Sauceda, Michael J Peluso, Annette Rid

Call for justice-informed HIV cure trials with ATIs

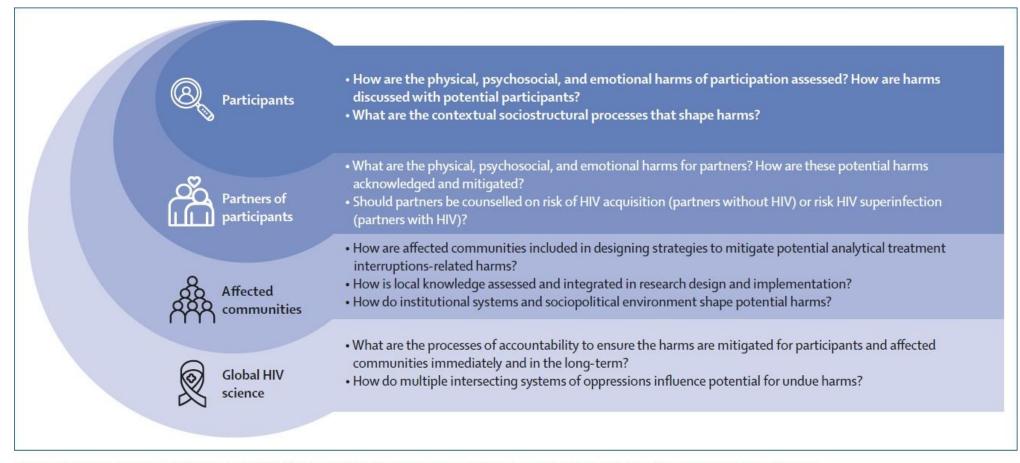


Figure: Key questions to mitigate potential harms related to HIV cure-related research with analytical treatment interruptions

Partner Dynamics

UCSF-amfAR Combination Trial

Participants and partners experienced difficulties during extended ATI:

- Partner protections more difficult as time progressed
- Discomfort with intimacy
- Difficulty finding out whether partners on PrEP
- One partner took emergency PEP, provoking anxiety and need for additional support
- Partners had fertility desires
 - Condomless sex coinciding with viremic window quote

Need for more evidence-based BSSR in this area.

So, I'm dealing with the relationship piece, and then, a month of getting the test, and my partner is negative, and it's going to stay that way. The challenges in the relationship there, and then, navigating my body... It's been a real challenge for my partner during this journey, which I completely underestimated ... I am in a relationship with a woman. And we have attempted to conceive during the time leading up to this... We were really arriving into this place where my partner is longing to try and conceive again. And that essentially requires unprotected sex... And that occurred right as I became detectable. So, once again, my partner had to go on to PrEP. She had to go through testing at that time, testing afterwards. It was a huge process for us and our relationship... It really affected our relationship, the trust piece. Essentially, I just had to take full ownership, like, "You're right. I should've said, 'No, we're not doing this right now.' But I didn't ... The practicality and the realness began to subside the deep elements of hope or ego, or just blind ambition, and the realness started coming into effect. -Participant #03

Roles of REC, UNCST, and NDA

Research Ethics Committees (REC)

RECs review research protocols ensuring ethical standards and participant protection in biomedical research.

Uganda National Council for Science and Technology (UNCST)

UNCST provides national oversight, policy guidance, and registers research projects in Uganda.

National Drug Authority (NDA)

NDA regulates drug approvals and monitors biological products including advanced therapies.

Need for Policy Updates

Emerging cell and gene therapies require updated policies, specialized training, and enhanced collaboration.

Capacity 2023 EDCTP Grant

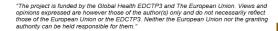
Presentation of the Technical Advisory Committee

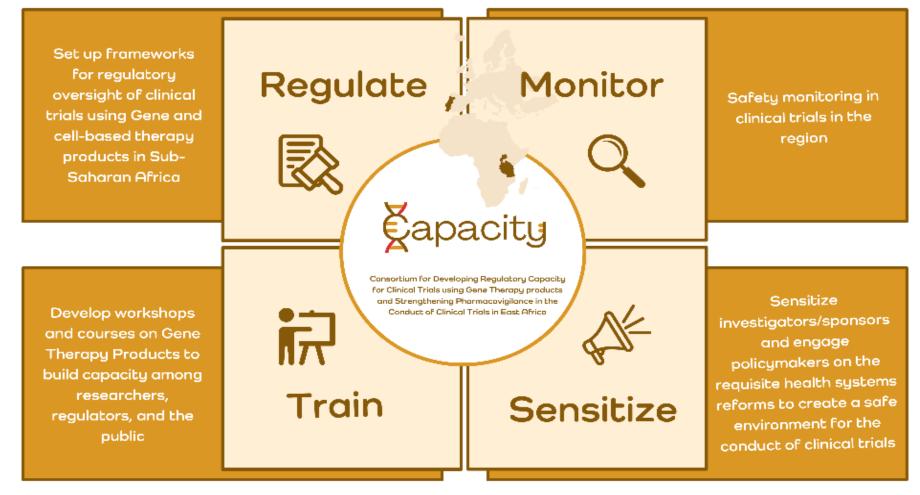
Capacity 2023 Grant

- Type of Action: Horizon Europe Joint Undertaking Global Health EDCTP3 – Coordination and Support Action
- Duration: 36 months
- Entry into force: 1st April 2024

 31st March 2027
- Requested grant amount: EUR 999,313

Consortium





Overall Goals of the Grant

Real-World Examples and Ethical Dilemmas

Informed Consent Challenges

Participants often struggle to understand scientific concepts, causing issues with obtaining proper informed consent.

Cultural and Community Engagement

Cultural beliefs and mistrust can hinder recruitment and retention in clinical trials, requiring sensitive community engagement.

Regulatory Oversight Limitations

Regulatory bodies sometimes lack expertise to evaluate novel therapies, leading to delays and inconsistent oversight.

Ethical Strategies for Research

Context-specific ethical strategies like tailored communication and capacity building improve research